Modelo Matemáticas 2º-5º
Memoria de Trabajo
La Memoria de Trabajo, un componente del funcionamiento ejecutivo, permite a una persona mantener y manipular temporalmente información para aplicarla en otros procesos. Con nuestra Memoria de Trabajo, recordamos y aplicamos el conocimiento almacenado en nuestra Memoria a Corto y Largo Plazo para ayudar a comprender lo que estamos aprendiendo. Debido a que la Memoria de Trabajo es limitada, cuando se sobrecarga, los estudiantes pueden parecer tener dificultades con la Atención y pueden distraerse fácilmente porque tienen dificultades para recordar y usar la información.
Ideas Principales
La Memoria de Trabajo también puede llamarse actualización ya que implica trabajar en actualizar información en la memoria. Un modelo influyente de memoria de trabajo desglosa cuatro componentes, cada uno considerado con capacidad limitada. Estos componentes separados son responsables de mantener la Memoria de Trabajo Verbal, la Memoria de Trabajo Visual y Espacial, y de integrar información de estos componentes y vincular entre la Memoria a Largo Plazo y la Memoria de Trabajo. Hay un sistema de control ejecutivo que dirige las actividades dentro de estos sistemas, incluyendo cambios y enfoque de la atención entre ellos. Es importante señalar que muchos aspectos de las dificultades de aprendizaje a menudo se deben en parte a un déficit subyacente en una o más de estas áreas de la Memoria de Trabajo. Además, la falta de atención y otras dificultades debido a las dificultades de aprendizaje pueden conducir a problemas con la Memoria de Trabajo.
La carga cognitiva es otro elemento importante de la Memoria de Trabajo y se refiere a la cantidad de esfuerzo mental que se está realizando por la Memoria de Trabajo durante diferentes tareas. La Teoría de la Carga Cognitiva propone que la instrucción puede diseñarse de una manera que reduzca la carga cognitiva. También diferencia entre diferentes tipos de carga cognitiva:
- Intrínseca: La carga cognitiva que resulta de las características del contenido que el estudiante está aprendiendo.
- Extrínseca: La carga cognitiva que resulta de cómo se presenta el contenido al estudiante.
- Esencial: La carga cognitiva requerida para crear esquemas permanentes en la Memoria a Largo Plazo. El esquema se refiere a conceptos o conocimientos subyacentes. Una vez que se crean esquemas, es más fácil retener información que encaje dentro de esos esquemas en la Memoria de Trabajo.
Aprender más
En esta sección encontrarás microcredenciales ofrecidas por nuestro aliado Digital Promise. Ten en cuenta que están disponibles en inglés y fuera de nuestro sitio web.
- Cognición & Memoria: tema que incluye teorías de la ciencia cognitiva sobre cómo el cerebro procesa la información en el Mapa de Investigación de Digital Promise
- Memoria de Trabajo: subtema que describe la función de la memoria de trabajo del cerebro en el Mapa de Investigación de Digital Promise
- Estrategias Centradas en el Estudiante: microcredencial gratuita sobre estrategias para apoyar las diferencias de aprendizaje de los estudiantes
Referencias
Alloway, T. P., Gathercole, S. E., Kirkwood, H., & Elliott, J. (2009). The Working Memory Rating Scale: A classroom-based behavioral assessment of working memory. Learning and Individual Differences, 19(2), 242-245.
Andersson, U. (2008). Working memory as a predictor of written arithmetical skills in children: The importance of central executive functions. The British Journal of Educational Psychology, 78(2), 181–203.
Arrington, C. N., Kulesz, P. A., Francis, D. J., Fletcher, J. M., & Barnes, M. A. (2014). The contribution of attentional control and working memory to reading comprehension and decoding. Scientific Studies of Reading, 18(5), 325-346.
Baddeley, A. (2000). The episodic buffer: A new component of working memory?. Trends in Cognitive Sciences, 4(11), 417-423.
Barrouillet, P., & Lepine, R. (2005). Working memory and children’s use of retrieval to solve addition problems. Journal of Experimental Child Psychology, 91, 183–204.
Beilock, S. L., Rydell, R. J., & McConnell, A. R. (2007). Stereotype threat and working memory: Mechanisms, alleviation, and spillover. Journal of Experimental Psychology: General, 136(2), 256-276.
Cain, K., Oakhill, J., & Bryant, P. (2004). Children’s reading comprehension ability: Concurrent prediction by working memory, verbal ability, and component skills. Journal of Educational Psychology, 96(1), 31-42.
Della Sala, S., Gray, C., Baddeley, A., Allamano, N., & Wilson, L. (1999). Pattern span: A tool for unwelding visuo-spatial memory. Neuropsychologia, 37(10), 1189–1199.
DePrince, A. P., Weinzierl, K. M., & Combs, M. D. (2009). Executive function performance and trauma exposure in a community sample of children. Child Abuse & Neglect, 33(6), 353-361.
Duan, X., Wei, S., Wang, G., & Shi, J. (2010). The relationship between executive functions and intelligence on 11- to 12-year- old children. Psychological Test and Assessment Modeling, 52(4), 419–431.
Farah, M. J., Shera, D. M., Savage, J. H., Betancourt, L., Giannetta, J. M., Brodsky, N., … E.K., Hurt, H. (2006). Childhood poverty: Specific associations with neurocognitive development. Brain Research, 1110, 166-174.
Fuhrmann, D., Casey, C. S., Speekenbrink, M., & Blakemore, S. J. (2019). Social exclusion affects working memory performance in young adolescent girls. Developmental Cognitive Neuroscience, 40, 100718.
Hecht, S. A., & Vagi, K. J. (2010). Sources of group and Individual differences in emerging fraction skills. Journal of Educational Psychology, 102(4), 843–859.
Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive functions and self-regulation. Trends in Cognitive Sciences, 16(3), 174-180.
Kail, R., & Hall, L. K. (2001). Distinguishing short-term memory from working memory. Memory & Cognition, 29(1), 1–9.
Kail, R., & Salthouse, T. A. (1994). Processing speed as a mental capacity. Acta Psychologica, 86(2-3), 199–225.
Kamijo, K., Pontifex, M. B., O’Leary, K. C., Scudder, M. R., Wu, C. T., Castelli, D. M., & Hillman, C. H. (2011). The effects of an afterschool physical activity program on working memory in preadolescent children. Developmental Science, 14(5), 1046-1058.
Kofler, M. J., Singh, L. J., Soto, E. F., Chan, E. S. M., Miller, C. E., Harmon, S. L., & Spiegel, J. A. (2020). Working memory and short-term memory deficits in ADHD: A bifactor modeling approach. Neuropsychology, 34(6), 686–698.
Kofler, M. J., Spiegel, J. A., Soto, E. F., Irwin, L. N., Wells, E. L., & Austin, Kristen, E. (2019). Do working memory deficits underlie reading problems in attention-deficit/hyperactivity disorder (ADHD)? Journal of Abnormal Child Psychology, 47(3), 433–446.
Lee, K., Ng, E. L., & Ng, S. F. (2009). The contributions of working memory and executive functioning to problem representation and solution generation in algebraic word problems. Journal of Educational Psychology, 101(2), 373–387.
Li, Y., & Geary, D. C. (2013). Developmental gains in visuospatial memory predict gains in mathematics achievement. PloS One, 8(7).
Lustig, C., May, C., & Hasher, L. (2001). Working memory span and the role of proactive interference. Journal of Experimental Psychology: General, 130(2), 199–207.
Malone, A. S., Loehr, A. M., & Fuchs, L. S. (2017). The role of domain-general cognitive abilities and decimal labels in at-risk fourth-grade students’ decimal magnitude understanding. Learning and Individual Differences, 58, 90–96.
Mercader, J., Miranda, A., Presentación, M. J., Siegenthaler, R., & Rosel, J. F. (2018). Contributions of motivation, early numeracy skills, and executive functioning to mathematical performance. A longitudinal study. Frontiers in psychology, 8, 2375.
McQuade, J., Murray-Close, D., Shoulberg, E., & Hoza, B. (2013). Working memory and social functioning in children. Journal of Experimental Child Psychology, 115, 422–435.
McKenzie, B. Bull, R., & Gray, C. (2003). The effects of phonological and visual-spatial interference on children’s arithmetical performance. Educational and Child Psychology, 20(3).
McKown, C., & Weinstein, R.S. (2003). The development and consequences of stereotype-consciousness in middle childhood. Child Development, 74, 498-515.
Moura, R., Wood, G. M., Pinheiro-Chagas, P., Lonnemann, J., Krinzinger, H., Willmes, K., & Haase, V. G. (2013). Transcoding abilities in typical and atypical mathematics achievers: The role of working memory and procedural and lexical competencies. Journal of Experimental Child Psychology, 116, 707-727.
Orban, S. A., Rapport, M. D., Friedman, L. M., Eckrich, S. J., & Kofler, M. J. (2018). Inattentive behavior in boys with ADHD during classroom instruction: The mediating role of working memory processes. Journal of Abnormal Child Psychology, 46(4), 713-727.
Pascoe, L., Spencer-Smith, M., Giallo, R., Seal, M. L., Georgiou-Karistianis, N., Nosarti, C., … & Anderson, P. J. (2018). Intrinsic motivation and academic performance in school-age children born extremely preterm: The contribution of working memory. Learning and Individual Differences, 64, 22-32.
Peng, P., & Fuchs, D. (2016). A meta-analysis of working memory deficits in children with learning difficulties: Is there a difference between verbal domain and numerical domain?. Journal of Learning Disabilities, 49(1), 3-20.
Pickering, S. J., Gathercole, S. E., Hall, M., & Lloyd, S. A. (2001). Development of memory for pattern and path: Further evidence for the fractionation of visuo-spatial memory. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 54(2), 397–420.
Poon, K. (2018). Hot and cool executive functions in adolescence: Development and contributions to important developmental outcomes. Frontiers in Psychology, 8(2311), 1–18.
Ramirez, G., Chang, H., Maloney, E. A., Levine, S. C., & Beilock, S. L. (2016). On the Relationship between math anxiety and math achievement in early elementary school: The role of problem solving strategies. Journal of Experimental Child Psychology, 141, 83–100.
Schmader, T., Johns, M., & Forbes, C. (2008). An integrated process model of stereotype threat effects on performance. Psychological Review, 115(2), 336-356.
Schmader, T. (2010). Stereotype threat deconstructed. Current Directions in Psychological Science, 19(1), 14-18.
Seethaler, P. M., & Fuchs, L. S. (2006). The cognitive correlates of computational estimation skill among third-grade students. Learning Disabilities Research and Practice, 21(4), 233–243.
Steenari, M. R., Vuontela, V., Paavonen, E. J., Carlson, S., Fjällberg, M., & Aronen, E. T. (2003). Working memory and sleep in 6-to 13-year-old schoolchildren. Journal of the American Academy of Child & Adolescent Psychiatry, 42(1), 85-92.
Swanson, L., & Kim, K. (2007). Working memory, short-term memory, and naming speed as predictors of children’s mathematical performance. Intelligence, 35, 151–168.
Szucs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2013). Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex, 49(10), 2674–2688
Tourva, A., Spanoudis, G., & Demetriou, A. (2016). Cognitive correlates of developing intelligence: The contribution of working memory, processing speed and attention. Intelligence, 54, 136–146.
van der Ven, S. H. G., van der Maas, H. L. J., Straatemeier, M., & Jansen, B. R. J. (2013). Visuospatial working memory and mathematical ability at different ages throughout primary school. Learning and Individual Differences, 27, 182–192.
Vukovic, R. K., Kieffer, M. J., Bailey, S. P., & Harari, R. R. (2013). Mathematics anxiety in young children: Concurrent and longitudinal associations with mathematical performance. Contemporary Educational Psychology, 38, 1–10.
Zimmer, H. D., Speiser, H. R., & Seidler, B. (2003). Spatio-temporal working-memory and short-term object-location tasks use different memory mechanisms. Acta Psychologica, 114, 41–65.