Modelo Matemáticas 2º-5º

Pensamiento Algebraico

El Pensamiento Algebraico es la capacidad de generalizar, representar, justificar y razonar con estructuras y relaciones matemáticas abstractas. El Pensamiento Algebraico es importante para desarrollar una comprensión profunda de la aritmética y ayuda a los estudiantes a hacer conexiones entre muchos componentes de sus estudios matemáticos tempranos.

Ideas Principales

El Pensamiento Algebraico permite a los estudiantes pasar de pensar y trabajar con números y medidas particulares a entender y razonar con relaciones generalizadas entre ellos. Las prácticas de Pensamiento Algebraico ocurren en estos dominios matemáticos:

  • Equivalencia, expresiones, ecuaciones e inecuaciones: Incluye desarrollar una comprensión del signo igual como expresión de una relación entre cantidades equivalentes, representar y razonar con expresiones que incluyan cantidades desconocidas, y razonar y describir relaciones entre cantidades que pueden o no ser equivalentes.

  • Generalización y razonamiento con relaciones aritméticas: Incluye razonar sobre la estructura de expresiones y relaciones aritméticas, incluyendo propiedades básicas de número y Operaciones.

  • Pensamiento funcional: Incluye representar y razonar con relaciones generalizadas entre cantidades covariantes usando representaciones verbales, simbólicas, gráficas y tabulares (usando tablas).

  • Razonamiento Proporcional: Incluye razonar abstractamente sobre la relación entre dos cantidades generalizadas.

Andersson, U. (2008). Working memory as a predictor of written arithmetical skills in children: The importance of central executive functionsThe British Journal of Educational Psychology78(Pt 2), 181–203.

Best, J. R., Miller, P. H., & Naglieri, J. A. (2011). Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sampleLearning and Individual Differences21(4), 327–336.

Blanton, M., Stephens, A., Knuth, E., Gardiner, A., Isler, I., & Kim, J. (2015). The development of children’s algebraic thinking: The impact of a comprehensive early algebra intervention in third gradeJournal for Research in Mathematics Education, 46(1), 39-87.

Blanton, M., Brizuela, B., Stephens, A., Knuth, E., Isler, I., Gardiner, A., … Stylianou, D. (2018). Implementing a framework for early algebra. In Teaching and Learning Algebraic Thinking with 5-12 Year Olds. ICME-13 Monographs. (pp. 27–49). Springer, Cham.

Booker, G. (2009). Algebraic thinking: Generalising number and geometry to express patterns and properties succinctlyGriffith University, Brisbane.

Bush, S. B., & Karp, K. S. (2013). Prerequisite algebra skills and associated misconceptions of middle grade students: A reviewJournal of Mathematical Behavior32(3), 613–632.

Cai, J., & Knuth, E. (Eds.). (2011). Early algebraization: A global dialogue from multiple perspectives. Heidelberg, Germany: Springer.

Capraro, M. M., & Joffrion, H. (2006). Algebraic equations: Can middle-school students meaningfully translate from words to mathematical symbols? Reading Psychology27(2–3), 147–164.

Carraher, D. W., & Schliemann, A. D. (2007). Early algebra and algebraic reasoning. In F. K. Lester, Jr. (Ed.), Second handbook of research on mathematics teaching and learning (Vol. 2, pp. 669–705). Charlotte, NC: Information Age Publishing.

Carraher, D. W., Schliemann, A. D., & Schwartz, J. L. (2008). Early algebra is not the same as algebra early. In J. J. Kaput, D. W. Carraher & M. L. Blanton (Eds.), Algebra in the early grades (pp. 235-272). New York, NY: Lawrence Erlbaum Associates.

Empson S.B., Levi L., Carpenter T.P. (2011) The algebraic nature of fractions: Developing relational thinking in elementary school. In Cai J., Knuth E. (Eds) Early Algebraization. Advances in Mathematics Education. Springer: Berlin, Heidelberg

Geary, D. C., Hoard, M. K., Nugent, L., & Rouder, J. N. (2016). Individual differences in algebraic cognition: relation to the approximate number and semantic memory systemsJournal of Experimental Child Psychology15(4), 942–953.

Irwin, K. C., & Britt, M. S. (2005). The algebraic nature of students’ numerical manipulation in the New Zealand Numeracy ProjectEducational Studies in Mathematics58(2), 169-188.

Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? In J. J. Kaput, D. W. Carraher & M. L. Blanton (Eds.), Algebra in the early grades (pp. 5-17). New York, NY: Lawrence Erlbaum Associates.

Keller, J. (2007). Stereotype threat in classroom settings: The interactive effect of domain identification, task difficulty and stereotype threat on female students’ maths performanceBritish journal of educational psychology77(2), 323-338.

Kieran, C. (2007). Learning and teaching of algebra at the middle school through college levels: Building meaning for symbols and their manipulation. In F. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 707–762). Reston, VA: NCTM.

Lee, K., Ng, E. L., & Ng, S. F. (2009). The contributions of working memory and executive functioning to problem representation and solution generation in algebraic word problemsJournal of Educational Psychology101(2), 373–387.

Lee, K., Ng, S. F., Ng, E. L., & Lim, Z. Y. (2004). Working memory and literacy as predictors of performance on algebraic word problemsJournal of Experimental Child Psychology89(2), 140-158.

MacGregor, M., & Price, E. (1999). An exploration of aspects of language proficiency and algebra learningJournal for Research in Mathematics Education. 30, 449-467.

Mix, K. S., Levine, S. C., Young, C., & Hambrick, D. Z. (2016). Separate but correlated: The latent structure of space and mathematics across developmentJournal of Experimental Psychology: General145(9), 1206–1227.

National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core standards mathematics. Washington, DC: Authors.

Stacey, K., & MacGregor, M. (1997). Building foundations for algebraMathematics teaching in the middle school, 2(4), 252-60.

Star, J. R., & Rittle-Johnson, B. (2008). Flexibility in problem solving: The case of equation solvingLearning and Instruction18(6), 565–579.

Stephens, A. C., Ellis, A. B., Blanton, M., & Brizuela, B. M. (2017). Algebraic thinking in the elementary and middle grades. In J. Cai (Ed.), Compendium for Research in Mathematics Education. Reston, VA: National Council of Teachers of Mathematics.