Modelo Matemáticas 2º-5º
Pensamiento Algebraico
El Pensamiento Algebraico es la capacidad de generalizar, representar, justificar y razonar con estructuras y relaciones matemáticas abstractas. El Pensamiento Algebraico es importante para desarrollar una comprensión profunda de la aritmética y ayuda a los estudiantes a hacer conexiones entre muchos componentes de sus estudios matemáticos tempranos.
Ideas Principales
El Pensamiento Algebraico permite a los estudiantes pasar de pensar y trabajar con números y medidas particulares a entender y razonar con relaciones generalizadas entre ellos. Las prácticas de Pensamiento Algebraico ocurren en estos dominios matemáticos:
- Equivalencia, expresiones, ecuaciones e inecuaciones: Incluye desarrollar una comprensión del signo igual como expresión de una relación entre cantidades equivalentes, representar y razonar con expresiones que incluyan cantidades desconocidas, y razonar y describir relaciones entre cantidades que pueden o no ser equivalentes.
- Generalización y razonamiento con relaciones aritméticas: Incluye razonar sobre la estructura de expresiones y relaciones aritméticas, incluyendo propiedades básicas de número y Operaciones.
- Pensamiento funcional: Incluye representar y razonar con relaciones generalizadas entre cantidades covariantes usando representaciones verbales, simbólicas, gráficas y tabulares (usando tablas).
- Razonamiento Proporcional: Incluye razonar abstractamente sobre la relación entre dos cantidades generalizadas.
Referencias
Andersson, U. (2008). Working memory as a predictor of written arithmetical skills in children: The importance of central executive functions. The British Journal of Educational Psychology, 78(Pt 2), 181–203.
Best, J. R., Miller, P. H., & Naglieri, J. A. (2011). Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learning and Individual Differences, 21(4), 327–336.
Blanton, M., Stephens, A., Knuth, E., Gardiner, A., Isler, I., & Kim, J. (2015). The development of children’s algebraic thinking: The impact of a comprehensive early algebra intervention in third grade. Journal for Research in Mathematics Education, 46(1), 39-87.
Blanton, M., Brizuela, B., Stephens, A., Knuth, E., Isler, I., Gardiner, A., … Stylianou, D. (2018). Implementing a framework for early algebra. In Teaching and Learning Algebraic Thinking with 5-12 Year Olds. ICME-13 Monographs. (pp. 27–49). Springer, Cham.
Booker, G. (2009). Algebraic thinking: Generalising number and geometry to express patterns and properties succinctly. Griffith University, Brisbane.
Bush, S. B., & Karp, K. S. (2013). Prerequisite algebra skills and associated misconceptions of middle grade students: A review. Journal of Mathematical Behavior, 32(3), 613–632.
Cai, J., & Knuth, E. (Eds.). (2011). Early algebraization: A global dialogue from multiple perspectives. Heidelberg, Germany: Springer.
Capraro, M. M., & Joffrion, H. (2006). Algebraic equations: Can middle-school students meaningfully translate from words to mathematical symbols? Reading Psychology, 27(2–3), 147–164.
Carraher, D. W., & Schliemann, A. D. (2007). Early algebra and algebraic reasoning. In F. K. Lester, Jr. (Ed.), Second handbook of research on mathematics teaching and learning (Vol. 2, pp. 669–705). Charlotte, NC: Information Age Publishing.
Carraher, D. W., Schliemann, A. D., & Schwartz, J. L. (2008). Early algebra is not the same as algebra early. In J. J. Kaput, D. W. Carraher & M. L. Blanton (Eds.), Algebra in the early grades (pp. 235-272). New York, NY: Lawrence Erlbaum Associates.
Empson S.B., Levi L., Carpenter T.P. (2011) The algebraic nature of fractions: Developing relational thinking in elementary school. In Cai J., Knuth E. (Eds) Early Algebraization. Advances in Mathematics Education. Springer: Berlin, Heidelberg
Geary, D. C., Hoard, M. K., Nugent, L., & Rouder, J. N. (2016). Individual differences in algebraic cognition: relation to the approximate number and semantic memory systems. Journal of Experimental Child Psychology, 15(4), 942–953.
Irwin, K. C., & Britt, M. S. (2005). The algebraic nature of students’ numerical manipulation in the New Zealand Numeracy Project. Educational Studies in Mathematics, 58(2), 169-188.
Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? In J. J. Kaput, D. W. Carraher & M. L. Blanton (Eds.), Algebra in the early grades (pp. 5-17). New York, NY: Lawrence Erlbaum Associates.
Keller, J. (2007). Stereotype threat in classroom settings: The interactive effect of domain identification, task difficulty and stereotype threat on female students’ maths performance. British journal of educational psychology, 77(2), 323-338.
Kieran, C. (2007). Learning and teaching of algebra at the middle school through college levels: Building meaning for symbols and their manipulation. In F. Lester (Ed.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 707–762). Reston, VA: NCTM.
Lee, K., Ng, E. L., & Ng, S. F. (2009). The contributions of working memory and executive functioning to problem representation and solution generation in algebraic word problems. Journal of Educational Psychology, 101(2), 373–387.
Lee, K., Ng, S. F., Ng, E. L., & Lim, Z. Y. (2004). Working memory and literacy as predictors of performance on algebraic word problems. Journal of Experimental Child Psychology, 89(2), 140-158.
MacGregor, M., & Price, E. (1999). An exploration of aspects of language proficiency and algebra learning. Journal for Research in Mathematics Education. 30, 449-467.
Mix, K. S., Levine, S. C., Young, C., & Hambrick, D. Z. (2016). Separate but correlated: The latent structure of space and mathematics across development. Journal of Experimental Psychology: General, 145(9), 1206–1227.
National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core standards mathematics. Washington, DC: Authors.
Stacey, K., & MacGregor, M. (1997). Building foundations for algebra. Mathematics teaching in the middle school, 2(4), 252-60.
Star, J. R., & Rittle-Johnson, B. (2008). Flexibility in problem solving: The case of equation solving. Learning and Instruction, 18(6), 565–579.
Stephens, A. C., Ellis, A. B., Blanton, M., & Brizuela, B. M. (2017). Algebraic thinking in the elementary and middle grades. In J. Cai (Ed.), Compendium for Research in Mathematics Education. Reston, VA: National Council of Teachers of Mathematics.