Modelo Matemáticas 2º-5º

Razonamiento Proporcional

El Razonamiento Proporcional implica una comprensión de la razón y las relaciones entre razones. Las razones expresan una relación de parte a todo que puede representarse en forma de fracciones, porcentajes o tasas. El Razonamiento Proporcional es un componente esencial de la competencia aritmética en la escuela primaria y proporciona acceso a habilidades matemáticas superiores, incluyendo álgebra, geometría, y probabilidad y estadística.

Ideas Principales

Los estudiantes comienzan con una comprensión informal de las relaciones proporcionales (por ejemplo, repartir o compartir equitativamente, o relacionar proporciones en áreas sombreadas de formas). Este conocimiento informal se desarrolla a lo largo de varios años en una comprensión conceptual más formal a medida que conectan diferentes aspectos del Razonamiento Proporcional, incluyendo:

  • Aprender a hacer comparaciones basadas en la multiplicación en lugar de la suma.
  • Aprender qué aspectos de una proporción pueden cambiarse (es decir, los valores específicos) y cuáles deben ser constantes (es decir, la relación multiplicativa entre los valores).
  • Aprender a hacer unidades compuestas —es decir, aprender a reconceptualizar una proporción como una sola entidad.

Aunque el Razonamiento Proporcional es desafiante para muchos estudiantes en los primeros años, aquellos con discalculia a menudo demuestran dificultades persistentes que no se resuelven sin intervención.

Agostino, A., Johnson, J., & Pascual-Leone, J. (2010). Executive functions underlying multiplicative reasoning: Problem type mattersJournal of Experimental Child Psychology105(4), 286–305.

Bailey, D. H., Siegler, R. S., & Geary, D. C. (2014). Early predictors of middle school fraction knowledgeDevelopmental Science17(5), 775–785.

Booth, J. L., Newton, K. J., & Twiss-Garrity, L. K. (2014). The impact of fraction magnitude knowledge on algebra performance and learningJournal of Experimental Child Psychology118(1), 110–118.

Carney, M. B., Smith, E., Hughes, G. R., Brendefur, J. L., & Crawford, A. (2016). Influence of proportional number relationships on item accessibility and students’ strategiesMathematics Education Research Journal28(4), 503–522.

Empson, S. B., & Turner, E. (2006). The emergence of multiplicative thinking in children’s solutions to paper folding tasksJournal of Mathematical Behavior25(1), 46–56.

Hansen, N., Jordan, N. C., Fernandez, E., Siegler, R. S., Fuchs, L., Gersten, R., & Micklos, D. (2015). General and math-specific predictors of sixth-graders’ knowledge of fractionsCognitive Development35, 34–49.

Hecht S., Close L., & Santisi, M. (2003). Sources of individual differences in fraction skillsJournal of Experimental Child Psychology, (86), 277–302.

Hecht, S. A., & Vagi, K. J. (2010). Sources of group and individual differences in emerging fraction skillsJournal of Educational Psychology102(4), 843–859.

Jeong, Y., Levine, S. C., & Huttenlocher, J. (2007). The development of proportional reasoning: Effect of continuous versus discrete quantitiesJournal of Cognition and Development8(2), 237–256.

Kleemans, T., Segers, E., & Verhoeven, L. (2018). Role of linguistic skills in fifth-grade mathematicsJournal of Experimental Child Psychology167, 404–413.

Lamon, S. J., (2007). Rational numbers and proportional reasoning: Toward a theoretical framework for research. In F. Lester (Ed.), Second handbook of research on teaching and learning mathematics, Vol. I (pp. 629 – 667). Reston, VA: National Council of Teachers of Mathematics.

Lortie-Forgues, H., Tian, J., & Siegler, R. S. (2015). Why is learning fraction and decimal arithmetic so difficult? Developmental Review38, 201–221.

Mazzocco, M. M. M., & Devlin, K. T. (2008). Parts and “holes”: Gaps in rational number sense among children with vs. without mathematical learning disabilitiesDevelopmental Science11(5), 681–691.

Mazzocco, M. M. M., Myers, G. F., Lewis, K. E., Hanich, L. B., & Murphy, M. M. (2013). Limited knowledge of fraction representations differentiates middle school students with mathematics learning disability (dyscalculia) versus low mathematics achievementJournal of Experimental Child Psychology115(2), 371–387.

Möhring, W., Newcombe, N. S., Levine, S. C., & Frick, A. (2016). Spatial proportional reasoning is associated with formal knowledge about fractionsJournal of Cognition and Development17(1), 67–84.

Namkung, J., Fuchs, L. S., & Koziol, N. (2018). Does initial learning about the meaning of fractions present similar challenges for students with and without adequate whole-number skill? Learning and Individual Differences61, 165–171.

National Research Council, & Mathematics Learning Study Committee. (2001). Adding it up: Helping children learn mathematics. National Academies Press.

Panaoura, A., Gagatsis, A., Deliyianni, E., & Elia, I. (2009). The structure of students’ beliefs about the use of representations and their performance on the learning of fractions. Educational Psychology29(6), 713–728.

Post, T., Behr, M., & Lesh, R. (1988). Proportionality and the development of prealgebra understandings In algebraic concepts in the curriculum K-12. Reston, VA: National Council of Teachers of Mathematics.

Siegler, R. S., Fazio, L. K., Bailey, D. H., & Zhou, X. (2013). Fractions: The new frontier for theories of numerical developmentTrends in Cognitive Sciences17(1), 13–19.

Thomas, N. (2004). The development of structure in the number systemProceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 4, 305-312.

Thompson, P. W., & Saldanha, L. A. (2003). Fractions and Multiplicative Reasoning. In J. Kilpatrick, G. Martin, & Schif (Eds.), Research companion to the Principles and Standards for School Mathematics (pp. 95–114).

Ye, A., Resnick, I., Hansen, N., Rodrigues, J., Rinne, L., & Jordan, N. C. (2016). Pathways to fraction learning: Numerical abilities mediate the relation between early cognitive competencies and later fraction knowledgeJournal of Experimental Child Psychology152, 242–263.