Modelo Matemáticas 2º-5º
Razonamiento Geométrico
El Razonamiento Geométrico implica usar el pensamiento abstracto para definir, analizar y formular argumentos sobre formas y relaciones espaciales. El conocimiento geométrico de los estudiantes proporciona representaciones concretas y modelos para conceptos matemáticos abstractos, que pueden servir como punto de entrada a habilidades de pensamiento matemático de orden superior.
Ideas Principales
Los niños comienzan con un conocimiento geométrico intuitivo (por ejemplo, sobre forma y simetría) que se desarrolla a través de la exposición a eventos en el mundo. En la escuela, este conocimiento informal se amplía y se expande hacia una comprensión más formal de estos conceptos geométricos.
El Razonamiento Geométrico se apoya en las Habilidades Espaciales, que permiten a los estudiantes comprender formas en dos y tres dimensiones y el espacio, y comunicar y argumentar sobre estos conceptos a través de diferentes canales, incluyendo la actividad sensoriomotora y corpórea.
Referencias
Beery, K. E., Buktenica, N. A., & Beery, N. A. (2010). The Beery-Buktenica developmental test of visual-motor integration: Administration, scoring, and teaching manual (6th ed.). Minneapolis, MN: NSC Pearson.
Booker, G. (2009). Algebraic thinking: Generalising number and geometry to express patterns and properties succinctly. Griffith University Brisbane.
Carroll, W. M. (1998). Middle school students’ reasoning about geometric situations. Mathematics Teaching in the Middle School, 3(6), 398-403.
Connolly, A. J. (2007). KeyMath diagnostic assessment (3rd ed.). Minneapolis, MN: Pearson Assessments.
Dehaene, S., Izard, V., Pica, P., & Spelke, E. (2006). Core knowledge of geometry in an Amazonian indigene group. Science, 311(5759), 381-384.
Eberle, R. S. (2014). The role of children’s mathematical aesthetics: The case of tessellations. Journal of Mathematical Behavior, 35, 129–143.
Fujita, T., Kondo, Y., Kumakura, H., & Kunimune, S. (2017). Students’ geometric thinking with cube representations: Assessment framework and empirical evidence. The Journal of Mathematical Behavior, 46, 96-111.
Gal, H., & Linchevski, L. (2010). To see or not to see: Analyzing difficulties in geometry from the perspective of visual perception. Educational Studies in Mathematics, 74(2), 163–183.
Huang, H. M. E., & Witz, K. G. (2011). Developing children’s conceptual understanding of area measurement: A curriculum and teaching experiment. Learning and Instruction, 21(1), 1–13.
Huguet, P., & Regner, I. (2007). Stereotype threat among schoolgirls in quasi-ordinary classroom circumstances. Journal of Educational Psychology, 99(3), 545.
Kaur, H. (2015). Two aspects of young children’s thinking about different types of dynamic triangles: Prototypicality and inclusion. ZDM: The International Journal on Mathematics Education, 47(3), 407–420.
Lehrer, R., Kobiela, M., & Weinberg, P. J. (2013). Cultivating inquiry about space in a middle school mathematics classroom. ZDM – International Journal on Mathematics Education, 45(3), 365–376.
Levav-Waynberg, A., & Leikin, R. (2012). The role of multiple solution tasks in developing knowledge and creativity in geometry. Journal of Mathematical Behavior, 31(1), 73–90.
National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common Core State Standards for Mathematics. Washington, DC.
Pittalis, M., & Christou, C. (2010). Types of reasoning in 3D geometry thinking and their relation with spatial ability. Educational Studies in Mathematics, 75, 191–212.
Sinclair, N., & Bruce, C. D. (2015). New opportunities in geometry education at the primary school. ZDM: The International Journal on Mathematics Education, 47(3), 319–329.
Tatsuoka, K. K., Corter, J. E., & Tatsuoka, C. (2004). Patterns of diagnosed mathematical content and process skills in TIMMS-R across a sample of 20 countries. American Educational Research Journal, 41(4), 901–926.