Modelo Matemáticas 6º-11º
Operaciones
Los estudiantes generalmente comienzan pensando en las Operaciones como indicaciones de qué cálculos realizar (encontrar la suma o la diferencia de dos números). Sin embargo, es fundamental que los estudiantes también desarrollen una comprensión conceptual de las Operaciones. Esta base conceptual apoya a los estudiantes en estimar cálculos aproximados, además de calcular rápida y precisamente utilizando procedimientos establecidos.
Ideas Principales
La habilidad de los estudiantes con las Operaciones se apoya en estos componentes conceptuales críticos:
- Comprender las propiedades algebraicas de las Operaciones involucradas en el problema: Por ejemplo, los estudiantes deberían ser capaces de transformar la suma más difícil 3+8+7 en la suma más fácil 3+7+8 (es fácil ver que 3+7 = 10, y luego es fácil sumar 8 a 10).
- Comprender el sistema de Valor Posicional y descomposición: Por ejemplo, un estudiante también podría transformar 3+8+7 en 3+7+1+7 (haciendo más fácil sumar hasta 10, antes de sumar 1 y 7).
- Comprender cómo las relaciones en una situación del mundo real pueden expresarse mediante Operaciones (es decir, modelado).
Los estudiantes que tienen dificultad específica para conceptualizar números y realizar Operaciones aritméticas pueden tener discalculia, un trastorno de aprendizaje que afecta muchos aspectos fundamentales del pensamiento matemático.
Referencias
Barnhardt, C., Borsting, E., Deland, P., Pham, N., & Vu, T. (2005). Relationship between visual-motor integration and spatial organization of written language and math. Optometry and Vision Science, 82(2), 138–43.
Berry III, R. Q., Thunder, K., & McClain, O. L. (2011). Counter narratives: Examining the mathematics and racial identities of Black boys who are successful with school mathematics. Journal of African American Males in Education, 2(1).
Best, J. R., Miller, P. H., & Naglieri, J. A. (2011). Relations between executive function and
Butterworth, B, Sashank V, & Laurillard, D. (2011). Dyscalculia: From brain to education. Science 332 (6033), 1049-105.
Chomitz, V. R., Slining, M. M., McGowan, R. J., Mitchell, S. E., Dawson, G. F., & Hacker, K. A. (2009). Is there a relationship between physical fitness and academic achievement? Positive results from public school children in the northeastern United States. Journal of School Health, 79(1), 30-37.
De Smedt, B., Holloway, I. D., & Ansari, D. (2011). Effects of problem size and arithmetic operation on brain activation during calculation in children with varying levels of arithmetical fluency. NeuroImage, 57(3), 771–781.
De Visscher, A., & Noël, M. P. (2014). The detrimental effect of interference in multiplication facts storing: Typical development and individual differences. Journal of Experimental Psychology: General, 143(6), 2380–2400.
Froiland, J. M., & Davison, M. L. (2016). The longitudinal influences of peers, parents, motivation, and mathematics course-taking on high school math achievement. Learning and Individual Differences, 50, 252-259.
Keller, J. (2002). Blatant stereotype threat and women’s math performance: Self-handicapping as a strategic means to cope with obtrusive negative performance expectations. Sex Roles, 47(3-4), 193-198.
Kleemans, T., Segers, E., & Verhoeven, L. (2012). Naming speed as a clinical marker in predicting basic calculation skills in children with specific language impairment. Research in Developmental Disabilities, 33, 882–889.
Kyttälä, M., & Lehto, J. E. (2008). Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. European Journal of Psychology Education, 23(1), 77–94.
Robinson, K. M., & Dubé, A. K. (2009). Children’s understanding of the inverse relation between multiplication and division. Cognitive Development, 24(3), 310–321.
Robinson, K. M., Arbuthnott, K. D., Rose, D., McCarron, M. C., Globa, C. A., & Phonexay, S. D. (2006). Stability and change in children’s division strategies. Journal of Experimental Child Psychology, 93(3), 224–238.
Rosenberg-Lee, M., Ashkenazi, S., Chen, T., Young, B., Geary, D. C., & Menon, V. (2015). Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia. Developmental Science, 18(3), 351–372.
Roussel, J. L., Fayol, M., & Barrouillet, P. (2002). Procedural vs. direct retrieval strategies in arithmetic: A comparison between additive and multiplicative problem solving. European Journal of Cognitive Psychology, 14(1), 61–104.
Rubinsten, O., & Tonnock, R. (2010). Mathematics anxiety in children with developmental dyscalculia. Behavioral and Brain Functions, 6(46), 1–13.
Schneider, M., Rittle-Johnson, B., & Star, J. R. (2011). Relations among conceptual knowledge, procedural knowledge, and procedural flexibility in two samples differing in prior knowledge. Developmental Psychology, 47(6), 1525–1538
Swanson, H. L., & Sachse-Lee, C. (2001). Mathematical problem solving and working memory in children with learning disabilities: Both executive and phonological processes are important. Journal of Experimental Child Psychology, 79(3), 294–321.
Träff, U., Skagerlund, K., Olsson, L., & Östergren, R. (2017). Pathways to arithmetic fact retrieval and percentage calculation in adolescents. British Journal of Educational Psychology, 87(4), 647-663.
Vanbinst, K., Ceulemans, E., Ghesquière, P., & De Smedt, B. (2015). Profiles of children’s arithmetic fact development : A model-based clustering approach. Journal of Experimental Child Psychology, 133, 29–46.
Wechsler, D. (2009). Wechsler Individual Achievement Test 2nd Edition (WIAT III). San Antonio, TX: The Psychological Corp.
Witacre, I., Schoen, R., Champagne, Z., & Goddard, A. (2017). Relational thinking: What’s the difference? Teaching Children Mathematics, 23(5), 302–308.