Modelo Matemáticas 6º-11º

Operaciones

Los estudiantes generalmente comienzan pensando en las Operaciones como indicaciones de qué cálculos realizar (encontrar la suma o la diferencia de dos números). Sin embargo, es fundamental que los estudiantes también desarrollen una comprensión conceptual de las Operaciones. Esta base conceptual apoya a los estudiantes en estimar cálculos aproximados, además de calcular rápida y precisamente utilizando procedimientos establecidos.

Ideas Principales

La habilidad de los estudiantes con las Operaciones se apoya en estos componentes conceptuales críticos:

  • Comprender las propiedades algebraicas de las Operaciones involucradas en el problema: Por ejemplo, los estudiantes deberían ser capaces de transformar la suma más difícil 3+8+7 en la suma más fácil 3+7+8 (es fácil ver que 3+7 = 10, y luego es fácil sumar 8 a 10).

  • Comprender el sistema de Valor Posicional y descomposición: Por ejemplo, un estudiante también podría transformar 3+8+7 en 3+7+1+7 (haciendo más fácil sumar hasta 10, antes de sumar 1 y 7).

  • Comprender cómo las relaciones en una situación del mundo real pueden expresarse mediante Operaciones (es decir, modelado).

Los estudiantes que tienen dificultad específica para conceptualizar números y realizar Operaciones aritméticas pueden tener discalculia, un trastorno de aprendizaje que afecta muchos aspectos fundamentales del pensamiento matemático.

Barnhardt, C., Borsting, E., Deland, P., Pham, N., & Vu, T. (2005). Relationship between visual-motor integration and spatial organization of written language and math. Optometry and Vision Science82(2), 138–43.

Berry III, R. Q., Thunder, K., & McClain, O. L. (2011). Counter narratives: Examining the mathematics and racial identities of Black boys who are successful with school mathematicsJournal of African American Males in Education2(1).

Best, J. R., Miller, P. H., & Naglieri, J. A. (2011). Relations between executive function and

Butterworth, B, Sashank V, & Laurillard, D. (2011). Dyscalculia: From brain to education. Science 332 (6033), 1049-105.

Chomitz, V. R., Slining, M. M., McGowan, R. J., Mitchell, S. E., Dawson, G. F., & Hacker, K. A. (2009). Is there a relationship between physical fitness and academic achievement? Positive results from public school children in the northeastern United StatesJournal of School Health79(1), 30-37.

De Smedt, B., Holloway, I. D., & Ansari, D. (2011). Effects of problem size and arithmetic operation on brain activation during calculation in children with varying levels of arithmetical fluency. NeuroImage57(3), 771–781.

De Visscher, A., & Noël, M. P. (2014). The detrimental effect of interference in multiplication facts storing: Typical development and individual differencesJournal of Experimental Psychology: General143(6), 2380–2400.

Froiland, J. M., & Davison, M. L. (2016). The longitudinal influences of peers, parents, motivation, and mathematics course-taking on high school math achievementLearning and Individual Differences50, 252-259.

Keller, J. (2002). Blatant stereotype threat and women’s math performance: Self-handicapping as a strategic means to cope with obtrusive negative performance expectationsSex Roles47(3-4), 193-198.

Kleemans, T., Segers, E., & Verhoeven, L. (2012). Naming speed as a clinical marker in predicting basic calculation skills in children with specific language impairment. Research in Developmental Disabilities33, 882–889.

Kyttälä, M., & Lehto, J. E. (2008). Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligenceEuropean Journal of Psychology Education23(1), 77–94.

Robinson, K. M., & Dubé, A. K. (2009). Children’s understanding of the inverse relation between multiplication and divisionCognitive Development24(3), 310–321.

Robinson, K. M., Arbuthnott, K. D., Rose, D., McCarron, M. C., Globa, C. A., & Phonexay, S. D. (2006). Stability and change in children’s division strategiesJournal of Experimental Child Psychology93(3), 224–238.

Rosenberg-Lee, M., Ashkenazi, S., Chen, T., Young, B., Geary, D. C., & Menon, V. (2015). Brain hyper-connectivity and operation-specific deficits during arithmetic problem solving in children with developmental dyscalculia. Developmental Science18(3), 351–372.

Roussel, J. L., Fayol, M., & Barrouillet, P. (2002). Procedural vs. direct retrieval strategies in arithmetic: A comparison between additive and multiplicative problem solvingEuropean Journal of Cognitive Psychology14(1), 61–104.

Rubinsten, O., & Tonnock, R. (2010). Mathematics anxiety in children with developmental dyscalculia. Behavioral and Brain Functions6(46), 1–13.

Schneider, M., Rittle-Johnson, B., & Star, J. R. (2011). Relations among conceptual knowledge, procedural knowledge, and procedural flexibility in two samples differing in prior knowledgeDevelopmental Psychology47(6), 1525–1538

Swanson, H. L., & Sachse-Lee, C. (2001). Mathematical problem solving and working memory in children with learning disabilities: Both executive and phonological processes are importantJournal of Experimental Child Psychology79(3), 294–321.

Träff, U., Skagerlund, K., Olsson, L., & Östergren, R. (2017). Pathways to arithmetic fact retrieval and percentage calculation in adolescentsBritish Journal of Educational Psychology87(4), 647-663.

Vanbinst, K., Ceulemans, E., Ghesquière, P., & De Smedt, B. (2015). Profiles of children’s arithmetic fact development : A model-based clustering approachJournal of Experimental Child Psychology133, 29–46.

Wechsler, D. (2009). Wechsler Individual Achievement Test 2nd Edition (WIAT III). San Antonio, TX: The Psychological Corp.

Witacre, I., Schoen, R., Champagne, Z., & Goddard, A. (2017). Relational thinking: What’s the difference? Teaching Children Mathematics23(5), 302–308.