Modelo Matemáticas 6º-11º

Razonamiento Geométrico

El Razonamiento Geométrico implica usar el pensamiento abstracto para definir, analizar y argumentar sobre formas y relaciones espaciales. Los estudiantes también deben ser capaces de formalizar estos argumentos en pruebas escritas. El conocimiento geométrico de los estudiantes proporciona representaciones concretas y modelos para conceptos matemáticos abstractos, que pueden servir como un punto de entrada a habilidades de pensamiento matemático de orden superior.

Ideas Principales

Los niños comienzan con un conocimiento geométrico intuitivo (por ejemplo, sobre forma y simetría) que se desarrolla a través de la exposición a eventos en el mundo. En la escuela, este conocimiento informal se amplía y se expande hacia una comprensión más formal de los conceptos geométricos, incluyendo:

Simetría: reflexión a lo largo de una línea (por ejemplo, doblar) dentro de una forma;

Congruencia: la relación entre formas a través de rotación, reflexión o traslaciones; y

Similitud: la relación entre formas cuyas lados son proporcionales y los ángulos son iguales.

El Razonamiento Geométrico se apoya en las Habilidades Espaciales, que permiten a los estudiantes comprender formas en dos y tres dimensiones y el espacio, y comunicar y argumentar sobre estos conceptos a través de diferentes canales, incluyendo la actividad sensoriomotora y corpórea.

Arıcı, S., & Aslan-Tutak, F. (2015). The effect of origami-based instruction on spatial visualization, geometry achievement, and geometric reasoning. International Journal of Science and Mathematics Education13(1), 179-200.

Beery, K. E., Buktenica, N. A., & Beery, N. A. (2010). The Beery-Buktenica developmental test of visual-motor integration: Administration, scoring, and teaching manual (6th ed.). Minneapolis, MN: NSC Pearson.

Boakes, N. J. (2009). Origami instruction in the middle school mathematics classroom: Its impact on spatial visualization and geometry knowledge of studentsRMLE Online32(7), 1–12.

Booker, G. (2009). Algebraic thinking: Generalising number and geometry to express patterns and properties succinctly. Griffith University Brisbane.

Connolly, A. J. (2007). KeyMath diagnostic assessment (3rd ed.). Minneapolis, MN: Pearson Assessments.

Dehaene, S., Izard, V., Pica, P., & Spelke, E. (2006). Core knowledge of geometry in an Amazonian indigene group. Science311(5759), 381-384.

DeJarnette, A. F., Walczak, M., & González, G. (2014). Students’ concepts- and theorems-in-action on a novel task about similarity. School Sciences and Mathematics114(8), 405–414.

Dindyal, J. (2004). Algebraic thinking in geometry at high school level: Students’ use of variables and unknowns. In 27th Annual Conference of the Mathematics Education Research Group of Australasia Incorporated (MERGA 2004) on “Mathematics Education for the Third Millennium, Towards 2010”, (pp. 183–190)

Dvora, T., & Dreyfus, T. (2004). Unjustified assumptions based on diagrams in geometry. International Group for the Psychology of Mathematics Education.

Fitrianna, A. Y., Dinia, S., Mayasari, M., & Nurhafifah, A. Y. (2018). Mathematical representation ability of senior high school students: An evaluation from students’ mathematical disposition. JRAMathEdu (Journal of Research and Advances in Mathematics Education)3(1), 46-56.

Fujita, T., Kondo, Y., Kumakura, H., & Kunimune, S. (2017). Students’ geometric thinking with cube representations: Assessment framework and empirical evidence. The Journal of Mathematical Behavior46, 96-111.

Gal, H., & Linchevski, L. (2010). To see or not to see: Analyzing difficulties in geometry from the perspective of visual perception. Educational Studies in Mathematics74(2), 163–183.

Keller, J. (2002). Blatant stereotype threat and women’s math performance: Self-handicapping as a strategic means to cope with obtrusive negative performance expectationsSex Roles47(3-4), 193-198.

Kyttälä, M., & Lehto, J. E. (2008). Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. European Journal of Psychology Education23(1), 77–94.

Lehrer, R., Kobiela, M., & Weinberg, P. J. (2013). Cultivating inquiry about space in a middle school mathematics classroom. ZDM – International Journal on Mathematics Education45(3), 365–376.

Mabotja, S., Chuene, K., Maoto, S., & Kibirige, I. (2018). Tracking Grade 10 learners’ geometric reasoning through folding back. Pythagoras39(1), 1-10

National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common Core State Standards for Mathematics. Washington, DC.

Pittalis, M., & Christou, C. (2010). Types of reasoning in 3D geometry thinking and their relation with spatial ability. Educational Studies in Mathematics75(2), 191–212.

Santos, L., & Semana, S. (2015). Developing mathematics written communication through expository writing supported by assessment strategies. Educational Studies in Mathematics88(1), 65–87.

Sinclair, N., & Bruce, C. D. (2015). New opportunities in geometry education at the primary school. ZDM: The International Journal on Mathematics Education47(3), 319–329.

Tatsuoka, K. K., Corter, J. E., & Tatsuoka, C. (2004). Patterns of diagnosed mathematical content and process skills in TIMMS-R across a sample of 20 countries. American Educational Research Journal, 41(4), 901–926.

Yang, K. L. (2012). Structures of cognitive and metacognitive reading strategy use for reading comprehension of geometry proof. Educational Studies in Mathematics80(3), 307–326.