Modelo Matemáticas Prejardín-1º
Número No Simbólico
Todos nacemos con un sentido intuitivo de cantidad, antes de poder contar o usar símbolos para representarla. Esta comprensión del Número No Simbólico, o sentido numérico, ayuda a los estudiantes a explorar el concepto de número al estimar, comparar y combinar conjuntos de elementos visuales, como puntos.
Ideas Principales
Típicamente, los estudiantes comprenden el Número No Simbólico antes de desarrollar una comprensión de lo que representan las palabras y los números en sí mismos (Número Simbólico), sirviendo como una base para entender y trabajar con otros conceptos matemáticos. Los estudiantes con el trastorno del aprendizaje discalculia pueden tener dificultades en tareas que involucran el Número No Simbólico, o pueden desarrollar esta comprensión más lentamente que sus compañeros.
Referencias
Anobile, G., Pisa, U., & Stievano, P. (2013). Visual sustained attention and numerosity sensitivity correlate with math achievement in children. Journal of Experimental Child Psychology, 116, 380–391.
Chen, Q., & Li, J. (2014). Association between individual differences in non-symbolic number acuity and math performance : A meta-analysis. Acta Psychologica, 148, 163–172.
Chu, F. W., & Geary, D. C. (2015). Early numerical foundations of young children’s mathematical development. Journal of Experimental Child Psychology, 132, 205–212.
Decarli, G., Sella, F., Lanfranchi, S., Gerotto, G., Gerola, S., Cossu, G., & Zorzi, M. (2022). Severe developmental dyscalculia is characterized by core deficits in both symbolic and non-symbolic number sense. Psychological Science.
Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53-72.
Geary, D. C., & vanMarle, K. (2016). Young children’s core symbolic and nonsymbolic quantitative knowledge in the prediction of later mathematics achievement. Developmental Psychology, 52(12), 2130–2144.
Gilmore, C. K., McCarthy, S., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and achievement in the first year of formal schooling in mathematics. Cognition, 115(3), 394–406.
Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–668.
Hyde, D. C., Khanum, S., & Spelke, E. (2015). Brief non-symbolic, approximate number practice enhances subsequent exact symbolic arithmetic in children. Cognition, 131(1), 92–107.
Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Is approximate number precision a stable predictor of math ability? Learning and Individual Differences, 25, 126–133.
Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121, 256–261.
Moeller, K., Neuburger, S., Kaufmann, L., Landerl, K., & Nuerk, H. C. (2009). Basic number processing deficits in developmental dyscalculia: Evidence from eye tracking. Cognitive Development, 24(4), 371-386.
Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., … & Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33-41.
Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361-395.
Shusterman, A., Slusser, E., Halberda, J., & Odic, D. (2016). Acquisition of the cardinal principle coincides with improvement in approximate number system acuity in preschoolers. PLoS ONE, 11(4), 1–22.
Wagner, J. B., & Johnson, S. C. (2011). An association between understanding cardinality and analog magnitude representations in preschoolers. Cognition, 119(1), 10–22.
Xenidou-Dervou, L., Van Der Shot, M., & Van Lieshout, E. C. D. M. (2015). Working memory and number line representations in single-digit addition: Approximate versus exact, nonsymbolic versus symbolic. Quarterly Journal of Experimental Psychology, 68(6), 1148–1167.
Zhou, X., Wei, W., Zhang, Y., Cui, J., & Chen, C. (2015). Visual perception can account for the close relation between numerosity processing and computational fluency. Frontiers in Psychology, 6, 1–13.