Modelo Matemáticas Prejardín-1º
Número Simbólico
El Número Simbólico es entender las cantidades representadas por las palabras numéricas y los números mismos. Las habilidades de Número Simbólico también incluyen entender las relaciones entre diferentes números y ser capaz de comparar las magnitudes de los números. El conocimiento de Número Simbólico es un componente fundamental de la aritmética y la competencia matemática general. Los estudiantes con discalculia pueden demostrar una dificultad específica para comprender la representación de símbolos en magnitudes numéricas, lo que puede contribuir a dificultades con otros conceptos matemáticos.
Referencias
De Smedt, B., & Gilmore, C. K. (2011). Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 108(2), 278–292.
Devine, A., Hill, F., Carey, E., & Szűcs, D. (2018). Cognitive and emotional math problems largely dissociate: Prevalence of developmental dyscalculia and mathematics anxiety. Journal of Educational Psychology, 110(3), 431.
Geary, D. C., & vanMarle, K. (2016). Young children’s core symbolic and nonsymbolic quantitative knowledge in the prediction of later mathematics achievement. Developmental Psychology, 52(12), 2130–2144.
Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols : The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17–29.
Honore, N., & Noel, M.P. (2016). Improving preschoolers’ arithmetic through number magnitude training: The impact of non-symbolic and symbolic training. PLoS ONE, 11(11), 1–22.
Kolkman, M. E., Kroesbergen, E. H., & Leseman, P. P. M. (2014). Involvement of working memory in longitudinal development of number-magnitude skills. Infant and Child Development, 23(1), 36–50.
Linsen, S., Verschaffel, L., Reynvoet, B., & De Smedt, B. (2014). The association between children’s numerical magnitude processing and mental multi-digit subtraction. Acta Psychologica, 145, 75–83.
Mix, K. S., Prather, R. W., Smith, L. B., & Stockton, J. D. (2014). Young children’s interpretation of multidigit number names: From emerging competence to mastery. Child Development, 85(3), 1306–1319.
Moore, A. M., & Geary, D. C. (2016). Kindergartners’ fluent processing of symbolic numerical magnitude is predicted by their cardinal knowledge and implicit understanding of arithmetic 2 years earlier. Journal of Experimental Child Psychology, 150, 31–47.
Noël, M., & Rousselle, L. (2011). Developmental changes in the profiles of dyscalculia: An explanation based on a double exact-and-approximate number representation model. Frontiers in Human Neuroscience, 5, 1–4.
Nosworthy, N., Bugden, S., Archibald, L., Evans, B., & Ansari, D. (2013). A two-minute paper-and-pencil test of symbolic and nonsymbolic numerical magnitude processing explains variability in primary school children’s arithmetic competence. PLoS ONE, 8(7).
Rousselle, L., & Noël, M. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs. non-symbolic number magnitude processing. Cognition, 102, 361–395.
Sjöwall, D., & Thorell, L. B. (2019). A critical appraisal of the role of neuropsychological deficits in preschool ADHD. Child Neuropsychology, 25(1), 60–80.
Vanbinst, K., Ansari, D., Ghesqui, P., & De Smedt, B. (2016). Symbolic numerical magnitude is as important to arithmetic as phonological awareness is to reading. PLoS ONE, 1–11.
Vukovic, R. K., & Lesaux, N. K. (2013). The relationship between linguistic skills and arithmetic knowledge. Learning and Individual Differences, 23, 87–91